Domain Decomposition Solvers for Frequency-Domain Finite Element Equations
نویسندگان
چکیده
1 Institute for Applied Mathematics and Computational Science, Texas A&M University, College Station, USA, [email protected] 2 Institute of Computational Mathematics, Johannes Kepler University, Linz, Austria, [email protected]; [email protected] 3 Johann Radon Institute for Computational and Applied Mathematics, Austrian Academy of Sciences, Linz, Austria, [email protected]
منابع مشابه
Updating finite element model using frequency domain decomposition method and bees algorithm
The following study deals with the updating the finite element model of structures using the operational modal analysis. The updating process uses an evolutionary optimization algorithm, namely bees algorithm which applies instinctive behavior of honeybees for finding food sources. To determine the uncertain updated parameters such as geometry and material properties of the structure, local and...
متن کاملOutput-only Modal Analysis of a Beam Via Frequency Domain Decomposition Method Using Noisy Data
The output data from a structure is the building block for output-only modal analysis. The structure response in the output data, however, is usually contaminated with noise. Naturally, the success of output-only methods in determining the modal parameters of a structure depends on noise level. In this paper, the possibility and accuracy of identifying the modal parameters of a simply supported...
متن کاملMultilevel iterative solvers for the edge finite element solution of the 3D Maxwell equation
In the edge vector finite element solution of the frequency domain Maxwell equations, the presence of a large kernel of the discrete rotor operator is known to ruin convergence of standard iterative solvers. We extend the approach of [1] and, using domain decomposition ideas, construct a multilevel iterative solver where the projection with respect to the kernel is combined with the use of a hi...
متن کاملRobust FETI solvers for multiscale elliptic PDEs
Finite element tearing and interconnecting (FETI) methods are efficient parallel domain decomposition solvers for large-scale finite element equations. In this work we investigate the robustness of FETI methods in case of highly heterogeneous (multiscale) coefficients. Our main application are magnetic field computations where both large jumps and large variation in the reluctivity coefficient ...
متن کاملDomain Decomposition Based High Performance Parallel Computing
The study deals with the parallelization of finite element based Navier-Stokes codes using domain decomposition and state-ofart sparse direct solvers. There has been significant improvement in the performance of sparse direct solvers. Parallel sparse direct solvers are not found to exhibit good scalability. Hence, the parallelization of sparse direct solvers is done using domain decomposition t...
متن کامل